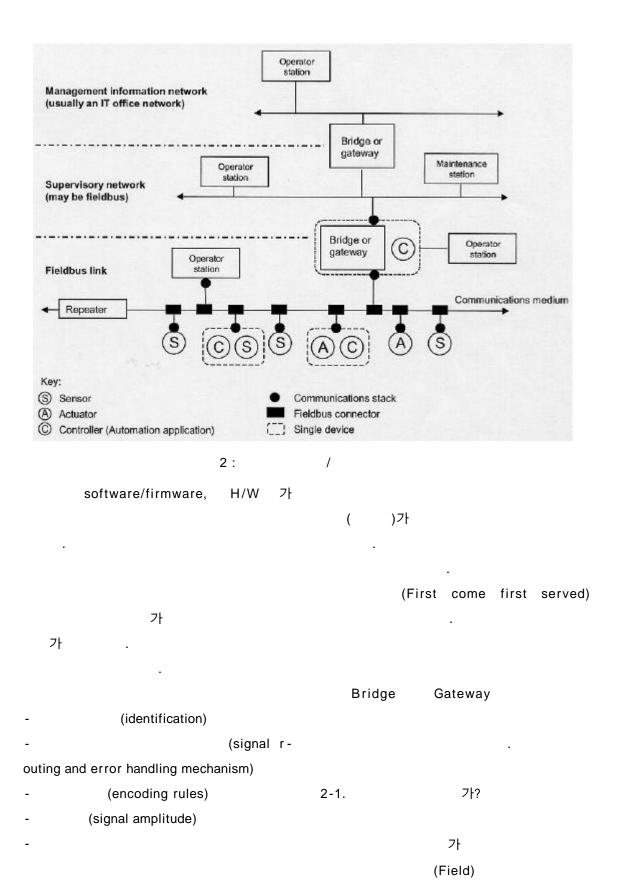

1. 가 가 가 가 : Twist pair copper wire, coaxial cable, fibre-optic 가 cable, radio) . 가 가 가 2.

가

1


가

가

1:

```
string(Tag
                    0
                                                                               가
                                          name
                                                               가
       0
               1
(
                                                2
                                                              가
                              (Receive
                  . (half-duplex
                                                                           가
mode)
          "one signal per pair"
                                                  가
                                                                               가
                                          (Twisted pair copper), coaxial
                                                  'stack "
                                                                      . Stack
                                                  (user's automation application
                                          process)
```


pointto -point 가 RS - 232 CIM(Computer Integrated Manufacturing) Protocol 가 (bus) 가? 가 2-2. Bus 가 (serial,) - SCSI IEE-488 Bus bit packet 가 가 mechanism 2,3 가 Serial Serial (point - to -point) Serial 가 (Topology) 가 가 가

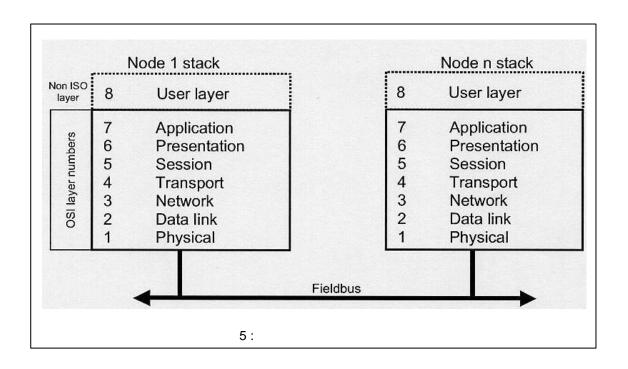
```
)
가 ( )
                                     2-3
                                           ?
                                                                  (PLC,
            가
                                     Board )
                         가
                                                                System
                                     Integrator
     가
                               가
                                     2-4.
      가
                                                                    가
           mechanics
     mechanical automatism
                                            motion control bus
      pneumatic automation
                                           sensor-actuator bus
                                      fieldbus with I/O management
  electromechanical automation
      relays based circuits
                                                 fieldbus
                                               factory LAN
               PLC
       electronics evolution
                                           office tree networks
      informatics evolution
                                           office star networks
                 😝 expensive wiring 😝 complexity 😝
```

ISO(International Standard Organization)
OSI(Open System Interconnection)
model

가

3

Model 7


3.

OSI Model

(Layer)

4

layer 7		user's application interface
layer 6	Presentation	codes conversion, syntax check,
layer 5	Session	work session
layer 4	Transport	connection and disconnectedness
layer 3	Network	routing information
layer 2	Data link	frames format and integrity check
layer 1	Physical	physical characteristics

1) Layer 1 (physical layer) 4) Layer 4 (transport layer) encoding Node Channel system OSI Model Node 5) Layer 5 (session layer) Point Chanel Application 2) Layer 2 (data link layer) session CRC Flame 3) Layer 3 (network layer). Information Flame 6) Layer 6 (presentation layer) Node 가 ASCII 16 -bit code 가

. Model

```
2) Bridge
                                    bridge OSI model 1,2
                                                                coding
7) Layer 7 (application layer).
                                           가
                                                        2 가
     Application Interface
                                    section
    가
                  Application
                                    Bridge
                                                                 가
                  . OSI
                                            . bridge
                                                                    가
                 5
                                              가
                                                   가
3-1.
                                    3) Router
                                    Router
                                    segment Flame
                                                            Switch
              가
          OSI Model
                                           OSI model 3
1) Repeater
                                    4) Gateway
Repeater
                   (amplifier)
                                    Gateway
                                                bridge
                                          7
                                              Application Layer
                                          decode
                                                     intelligence
                   가
                                    가
                 RS - 485
                                    bus
                                                               gateway
                                           application
         . OSI model
   encode
            decode
                           1
                                    3-2.
     가
                                          node point-to-point
      Repeater
                               가
                                    RS-232, RS-422 protocol
                                    (RS-232, RS-422 OSI model 1
                                                )
                                                           node 가
```

가 node 가 node 가 가 가 가 model 1) Ring 3) Tree Tree node Ring Star 가 tree node node 가 node star node 가 node 가 ring 가 node refresh 가 node 가 node 가 segment point - to -point 가 가 Tree Ring RS -485 node 3-3. node 가 2) Star node 가 Star ring

가

node 가

가

. node

master

server

. 가

, 4. CIM 가

·

, ,

가

•

가 가 .

. CIM 가

가 .

.(

.)

CIM structure transmission time megabyte in From offices ... hours and minutes the same Ethernet with TCP/IP office environment chilobyte in minutes Bridge Ethernet with TCP/IP or MAP several bytes factory environment in seconds GATEWAY Fieldbus Profibus, FIP, Bitbus,... some byte cell environment in milliseconds Sensor-actuator busses CAN,Interbus-S,Sercos,... bit machine environment in microseconds down to production amount of nodes

가 C (Two-way Communica-С MAC tion) .(peer to peer communication) С Α MAC milliseconds . IEEE 802 48 . 48 MAC 가 millisecond 가 가 가 MAC(medium access control) MAC 가 가 IEEE 가 .(MAC: IEEE 가 1,000

가

ID

, IEEE 3

IEEE 가

ID

LAN

TCP, IPX, NetBEUI

가

MAC

3

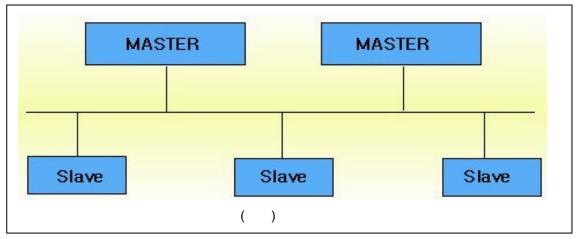
ID	•	2				가		
가								
•								
					가			
4-1.								
							가	
				가			. ,	
가				•	TCP/IP		,	
					,			
						PD		
(Sensor-Actua	tor-Bus)					ΓD		
-					,			
						•		
3	가	,						
				2)				
						가		256
1)								
	,		가					
		가						
	가							
가 MAP		cess Protoc	col)		•			
			,					

가 3) 가가 가 I/O PLC 가 PLC 가 . 가 가 Bitbus(IEEE -Profibus FMS (1118)), 가 가 PLC input /output 4) 가

4-2. IEEE-488 1) Bitbus), 가 가 가 . 가 가 : CAN 가 : 가 가 Bitbus 80 Intel , Bitbus 1983 가 Bitbus Intel

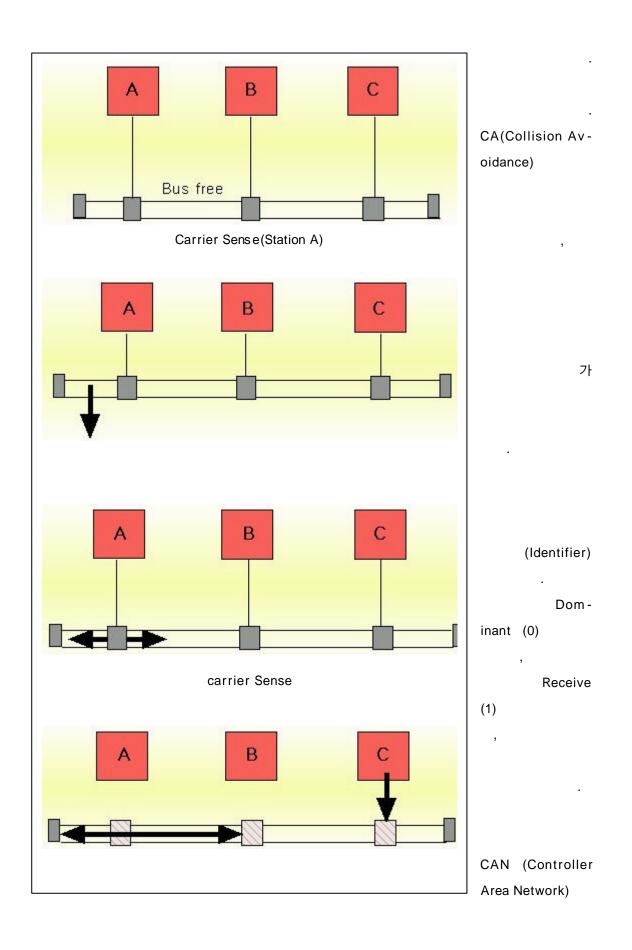
1991 가 . IEEE-1118 가

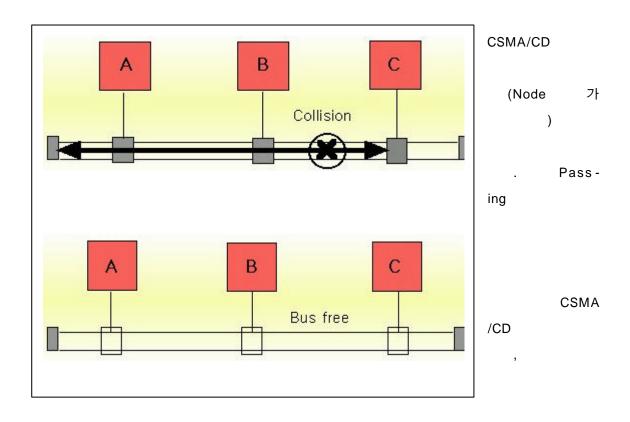
```
. 가
                   Bitbus
           SDLD
   . Bitbus
               가
                                                 Interbus -S
    )
- 248
- 62,5kbit/s 375 kbit/s
                                       가
          62,5 kbit/s
                         13,5 km
              375 kbit/s
1200 m
           RS-485,
                              (OSI
     7
              MAC
                     )
                                     Intel
                                                   , Phoenix
     가 ,
                                      가
             .(
    )
                                     DIN-19258
           2
                    3
    가
2) Interbus -S
                                                                   )
```


Phoenix .

가 - 13 km 가 가 - 400 m Bosch (1/0 가) 가 RS-486, 가 - 500 kbit/s 4096 가 . I/O 3) CAN 8 1983-85 가 . Bosch Bosch Intel CAN 가 CAN

- 가 -


```
- 20 kbit/s
- 1 Mbit/s 가
                                  - Topology
                 : 1 Mbit/s
                           40 m,
50 kbit/s 1 km
                                  - 254
                                                        가
- RS -485
                                              60 m,
                                                              250
                                  m
                                  - 2
                                        4 Mbit/s
- 가
                                               가
                                                        (
                                            )
                                  5.
4) Sercos
                                  5.1
Sercos
                          가
                                      가
                   (1989
                             )
                  8
                                                           가
                    가
               가
                가
             가
                            가
                                              (limit switch,
```


) senors/ distributors 가 5.2 가 Data 1) BUS . LAN (Determinstic Access Method) (Direct Arbitration Station Decental Station Decentral Master Token **MASTER** Slave Slave Slave Station - () Cycle Data 가 Data 가

가 - CSMA/CD(Carrier sense Multiple access Collision Detection) Bus Carrier Sense(Station A) Frame (Station) flame . CSMA/CD 가 () 가 (Send) 가 가 Station CSMA/CD carrier Sense 2) CSMA/CA(Carrier sense Multiple access Collision Avoidance) Carrier 가 가 CSMA/CA (Multiple Access) 가

(Collision Detection)

Token CSMA/CD

3) Token

6.

- Passing method

Token Passing

Token

. Station

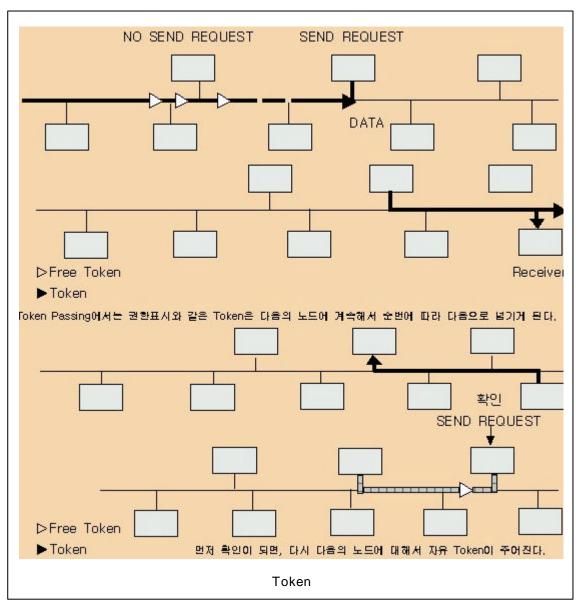
Token

가

Station 가

Station

6 가


(Determinstic) .

Synchronization signal, normal and actual

value signal, event message

4) CSMA/CD Passing

가 , msec

가 (User Layer)

1 가 .

OSI(Open

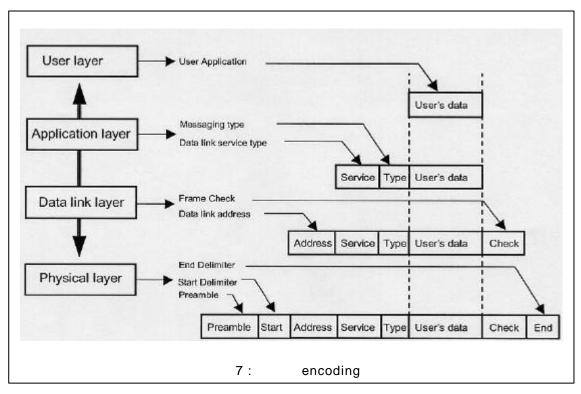
System Interconnection) 7

2

(Physical Layer)

(Data link Layer)

(Application Layer)


(Medium

Access Control)

(Logical link Control)

message type char- acteristic	graphic files	data files	numeric control programs	synchroniza- tion signals	nominal and actual value signals	event messages
allowed delay	1-100 s	1-100 s	1-100 s	1-100 ms	20-100 ms	0,1-80 ms
message length	> 10 kbits	1-10 kbits	> 10 kbits	8-64 bits	< 10 kbits	8-64 bits
frequency of appearance	rarely	very rarely	very rarely	very frequently	frequently	rarely
classification	Non Time-critical messages			S 1877 D 20	-critical messa	

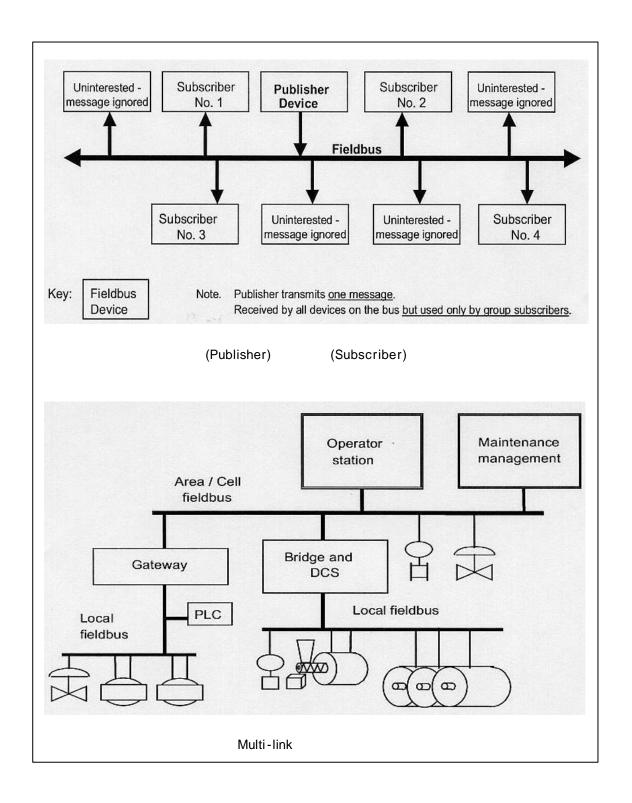
6:

(interoperability)

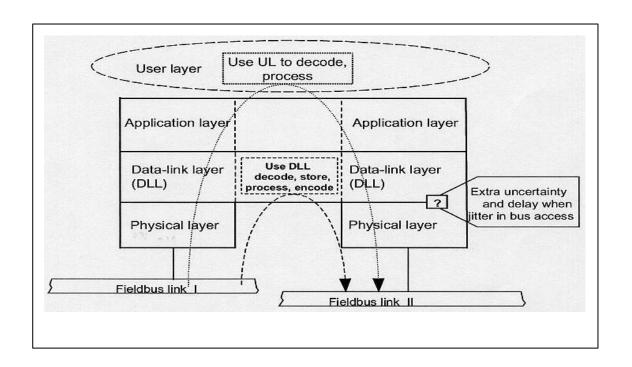
가

6-1.

timing


source

one -to-one


global

group multi

가

7. 1) (Conformance testing)
(OSI 1
7.1 7) 7

.

2)

•

(communic - B 가

ation protocol conformance testing)

.

. 4) (Multi-vendor)

Third party

. 가

. 7-2. (EN 50170, EN

50254, IEC 61158) 3) (IEC) CENELEC

- EN 50170 50254 IEC 61158

(IEC 61158)

CENELEC

(CENELEC) 가

(EN 50170)

. 가 IEC (EN

가가 . 50254)

BSI IEC, IEC 61158 (Second

	EN 50170 ⁽¹⁾	EN 50254 (2)	IEC 61158 (3)
ControlNet™	volume 5		type 2
FOUNDATION™ Fieldbus	volume 4		type 5
IEC Fieldbus			type 1
INTERBUS		volume 1	type 8
P-NET	volume 1		type 4
PROFIBUS	volume 2 (4)	volume 2 (5)	type 3
WorldFIP	volume 3	volume 3 ⁽⁶⁾	type 7

NOTES

- (1) Published by BSI as BS EN 50170
- (2) Published by BSI as BS EN 50254
- (3) IEC 61158 is a multi-part standard, with the following structure based on the OSI model:

IEC 61158-2 Physical layer specification and service definition (published by BSI as BS EN 61158-2)

(published by BSI as BS EN 61158-2)
IEC 61158-3
Data link layer service definition

IEC 61158-4 Data link layer protocol specification
IEC 61158-5 Application layer service definition
IEC 61158-6 Application layer protocol specification
IEC 61158-7 System management (in preparation)

- (4) PROFIBUS FMS and PA
- (5) PROFIBUS DP
- (6) WorldFIP Profile 1

edition) IEC 7가 IEC 61784

IEC 61158-Ed 3.0

FF + HSE, ContolNet

+ Ethernet IP, PROFIBUS + PROFInet,

P-NET, WorldFIP, INTERBUS, SwiftNet

IEC 61158

second edition third editon

IEC 61784 가

Re-work of IEC 61158-Ed. 2.0

.... to IEC 61158-Ed.3.0 + IEC 61784

IEC 61158-Ed. 2.0:

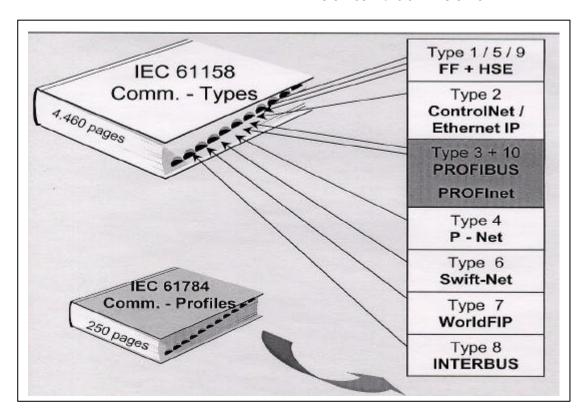
IEC 61158-Ed. 2.0

가

IEC 61158-Ed. 2.0 IEC 61158-Ed.

3.0 + IEC 61784

IEC _


part / layer

=> no solution structured document

- Re-work of IEC 61158-Ed. 2.0 ... to IEC 61158-Ed. 3.0 + IEC 61784:

Summary of all Fieldbus functions in each

61158

=> New IEC 61158 consists of all Fieldbus types functions in each part +	가
several types of Ethernet => Additional IEC 61784 document defines: Communication Profiles (like PROFIBUS) referring to IEC 61158-Ed.	?
3.0 and other Standard documents. => Content of the new Standard: FF + HSE, ContolNet + Ethernet IP, PROFIBUS + PROFInet, P-NET,	가
WorldFIP, INTERBUS, SwiftNet	,
PROFIBUS + PROFInet as part from IEC 61158 / 61784	(Nationalism)
IEC 61158	가
IEC - Communication Standard	가
IEC 61158 / IEC 61784:	가
- CDV : 2002 1 15	Profibus
- FDIS : 2002 9	
- Int.Standard: 2002	World FIP
	LON, Fieldbus
8.	Foundation
PROFIBUS,	•
Fieldbus Foundation, DeviceNet	
가 가	
, TCP/IP	·
	BSD
<u>.</u>	TCP/IP 7

. 가 9. 가 가 가

. - 0: TCP/IP , - 1:

- 2: . - 3: (LAN) 가 - 4: (WAN)

TCP/IP
?

TCP/IP ,

, 가

가

가

가

가

가

가

가

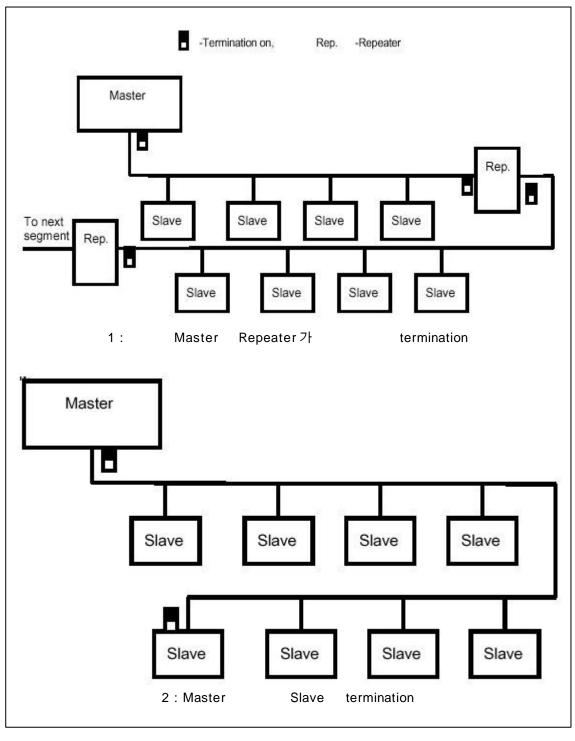
10.

가

가가

TCP/IP , 가 , 가

OSI . , 가 RS-485 . CIM


가 ,

, 가

.

,

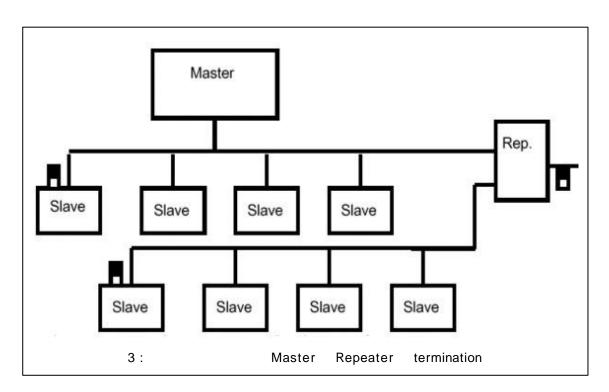
PROFIBUS Segmentation	housing
	shield 가
PROFIBUS	
segmentation	
	가
	B transmitter/receive A
- EN 500170 Volume 2 PROFIBUS	transmitter/receive
- PTO-PROFIBUS DP Implementation	А В
- SIMATIC NET PROFIBUS networks	
manual	가 가 .
- ET 200 Distributed I/O SYSTEM manual	
	2) segment
1. Network Rules	segment 30(31) station
	가 .
PROFIBUS RS - 485	
	3) segment
RS -485	9 segment (270
) 가 .
PROFIBUS	4) master node
Station	PROFIBUS-DP Mono master
segment .	PROFIBUS 가 Token
segment 가	active station
repeater optical link	(master) 가 . overall
module .	controlling master address 가
4) (1A/: -:)	1 . master
1) (Wiring)	. address "0"
PROFIBUS shielded twisted	monitoring .
pair cable . shield	
	5) slave(I/O) device

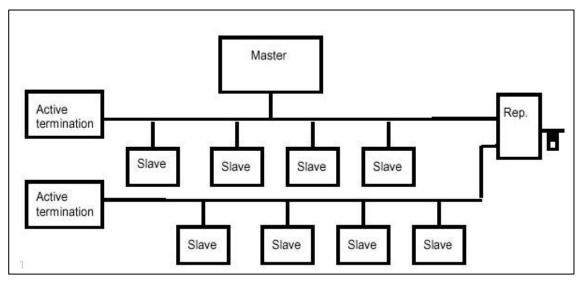
slave device "3" address 6) Termination
slave device master PROFIBUS 가
address 가 Termination

. PROFIBUS segment terminate

가

Termination master termination master 가 terminating resistor . termination 가 repeater (repeaters 가 segment 1 master device 가 termination 3 point repeaters master repeater 가 termination point termination


. termination


repeater 가 .

segment 가

termination

termination

active termination

. active cable

. active termination

.

90mA

가 가

3. special requirements for baudrates >

2. 1.5MBaud

segment 1.5MBaud baudrates

가 AT .

LEAST 가 . baudrates

. spur lines baud rate 가 1.5M

가 Baud .

. baud 12MBaud

3M programmer drop segments :

line(active cable) 100m/327feet

가 . 300m / 981feet .

가 drop line

. drop line

. station cable

1m/3feet

4. Segment Coupler

3 가 가 , ·

가 .

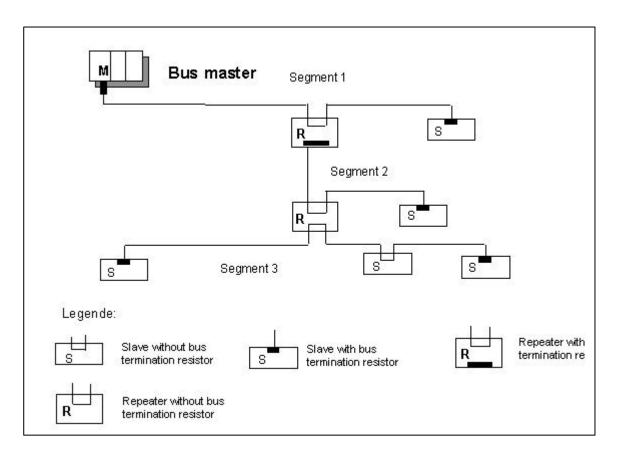
	А	В	С	
	EEx ia/ib IIC	EEx ib IIB		
	13.5 V	13.5 V	24 V	
	1.8 W	3.9 W	9.1 W	
	128 mA	280 mA	380 mA	
	35	16	39	
	1000 m(EEx ia)	1900 m	1900 m	
spur	30 m	30 m		*

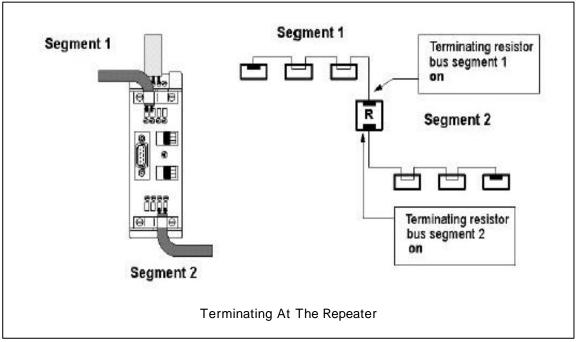
) 1) 50 /km Type A: 35 / 50 (km) = 700 m32 Type B: 16 / 50 (km) = 320 mType C: 39 / 50 (km) = 780 m30 /km , repeater

"Fault Disconnection Electronics"(FDE)

Type A: 35 /30 (km) = 1000m

(1166 m EEx ia/ib IIC

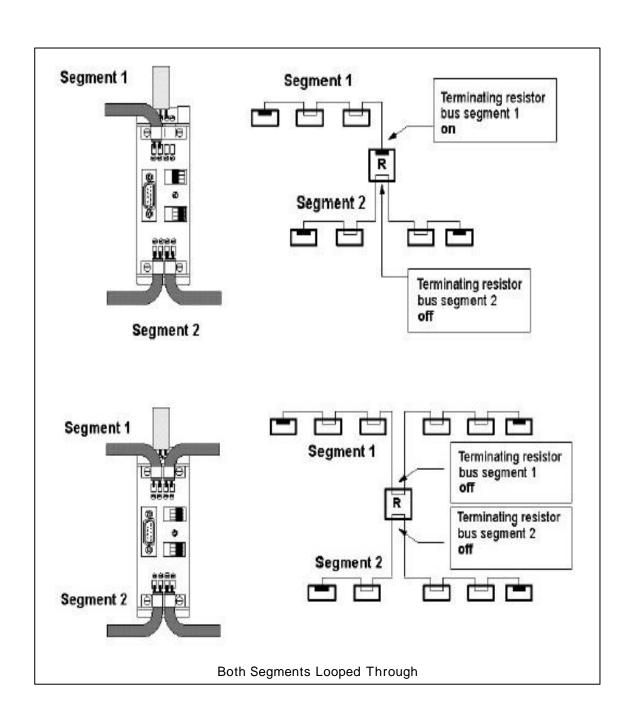

.)


. 가

```
= specific resistance mm²/m
                                                          Repeater
         mm<sup>2</sup>)
                                               Repeater
                                                         Bus segment
                                      Bus section
                                                      galvanic isolation
Repeaters, Spurs, Splices
                      trunk cable
              spurs
                   . repeater
                                            station : DP 126
                       가
                                          0 125
                                                                    FMS
                                                               )
                                         127 (
                                                          0
                                                                   126
Spurs
                     30m
                                         )
                                         Repeater 가
                                                          Segment
                spurs
                                      Station: 32
                                                       (kbit/s) : 9.6/19.2/
1m 가
                                      45.45/93.75/187.5/500/1,500/3,000/6,000
           spurs
                           (splices)
                                      /12,000 kBit/s
                  , 400m
                                                  Segment
                                                               : EN
                           spurs 가
                                      50170
                                                                Station
8m 가
                                                      Repeater 가
      2%가
                                             Repeater
                                                 가
                                      4
3) C
         Spur
                                      4) RS 485 Repeater
                                                              Segment
          PROFIBUS
   . PROFIBUS RS - 485
                               Bus
                                      RS 485 Repeater 가
Segment
                          PROFIBUS
     32
DP/FMS station
                                      - RS 485 Repeater
                                                              segment1
Segment 가
                                      segment2 terminating
                                           - RS 485 Repeater segment
                   19-24 15-18 13-14 1-12
             25-32
                                          1 terminating
                                                        RS 485 Repeater
                   30 m 60 m
            1 m
                              90 m 120 m
   spur
                                                    segment 2
```

Segment

 $/km = 2 \times 1000 /A$



- RS 485 Repeater

segment1 segment2

termination point

가

(Communication Device) MAU

().

PROFIBUS PA ?

Medium IEC 61158-2 1.

MAU(Medium Attachment

Unit) . PROFIBUS PA IEC 61158-2

??

_

- ? ? 가

- (Hand Held)

- "+" "-" 가

- PA-DP

	Not Intrinsically Safe	Intrinsically Safe, P < 1.8 W 1)	Intrinsically Safe, P < 1.2 W ²⁾
DC supply voltage	≤ 32 V	≤ 17.5 V	≤ 24 V
Ripple, noise	≤ 16 mV ³⁾	≤ 16 mV ³⁾	≤ 16 mV ³⁾
Output impedance)7)	≥3 k Ω ^{3) 4)}	\geq 400 Ω ^{3) 4)}	\geq 400 $\Omega^{-3)}$ 4) 5)
Asymmetry attenuation	≥ 50 dB ⁶⁾	≥ 50 dB ⁶⁾	≥ 50 dB ^{5) 6)}

- Power supplies with square or trapezoidal characteristic curve in accordance with the FISCO model
- 2) Power supply or barrier with linear characteristic curve
- In frequency range from 7.8 to 39 kHz. Otherwise see IEC 1158 -2.
- With integrated termination resistor: 100 Ω ±2%. We recommend providing each power supply with a terminating resistor.
- 5) Including barrier if required
- 6) No binding specification in the standard, but required functionally
- 7) The addition to the IEC 1158-2 standard planned at the time these guidelines were prepared also specifies limits for the phase of the output impedance.

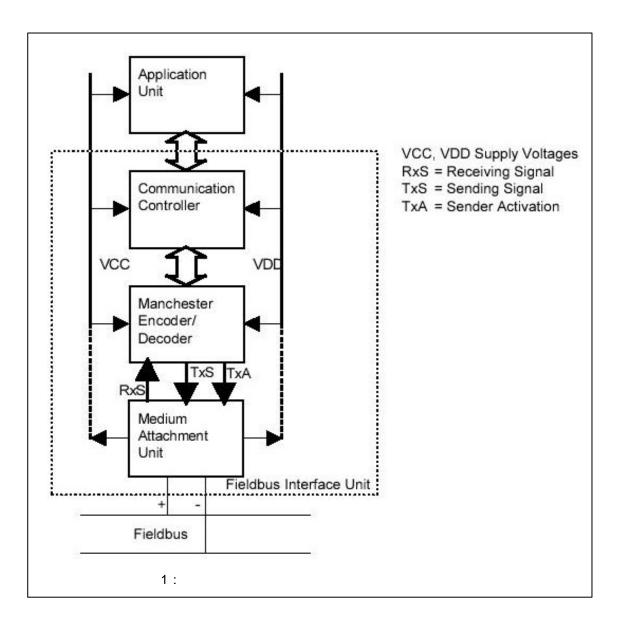
1 : Electrical Characteristics of power supplies

		Chapter of IEC 1158-2
Signal coding	Manchester II	9.2
Start delimiter	1, N+, N-, 1, 0, N-, N+, 0 1)	9.4
End delimiter	1, N+, N-, N+, N-,1, 0, 1 ¹⁾	9.5
Preamble	1, 0, 1, 0, 1, 0, 1, 0	9.6
Data transmission rate	31.25 kbit/sec ± 0.2 %	11.1
Output level (peak - peak)	0.75 V to 1 V	11.3
Max. difference between pos. and neg. sending amplitude	± 50 mV	11.3
Max. sending signal distortion (overswing, pulse tilt)	± 10%	11.3
Background noise	≤ 1 mV (RMS) ²⁾	11.3
Output impedance (amount)	$\geq 3 \text{ k}\Omega^{-3)}$	11.3
Permissible feed voltage	9 V to 32 V ⁴⁾	11.3
Asymmetry attenuation	≥ 50 dB ⁵⁾	11.3
Leakage current 6)	≤ 50 µA	

- N+ and N- are non-data symbols in accordance with IEC 1158-2.
- In frequency range of 1 to 100 kHz
- 1) 2) 3) In frequency range of 7.8 to 39 kHz
- Operational voltage range. Can be limited to 9 V to 17.5 V or to 9 V to 24 V for intrinsically safe devices. Cf. supply voltages in Table 2-1.

 Corresponds to a capacitive asymmetry of 250 pF at 39 kHz 4)
- 5)
- Only for intrinsic safety

2:

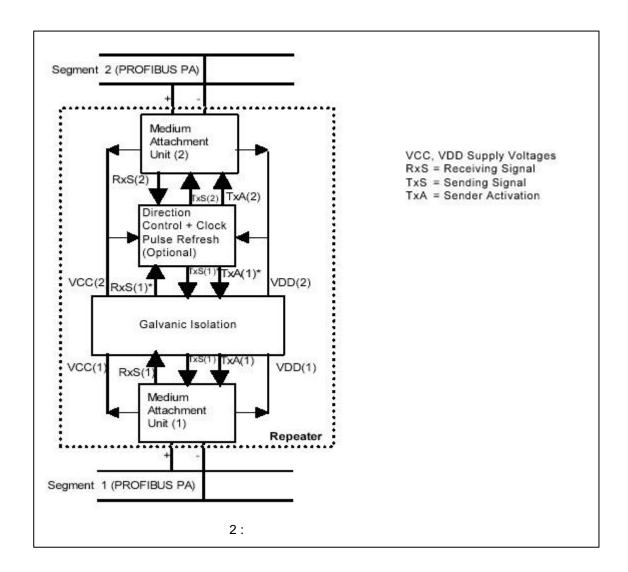

```
(bushing - type)
                                                             가 FISCO
                          (Symmetry) "
      NAMUR
                          "Interference
                                                                    ),
Immunity Requirements i /5/
```

3.

	Field Devices	Compo- nents Close to the Process	ННТ	Repeater	PA-DP Signa Coupler
Fieldbus interface in acc. w. IEC 1158-2	х	х	×	х	х
Type of explosion protection in acc. w. EN 50 020 1)	x	х	х	x	Х
Communication device in acc. w. the FISCO model ²⁾	x	х	х	×	х
Permissible operating voltage	х	х	×	х	х
Maximum operating current	x	х	х	х	х
Maximum current when fault occurs	x	х	х	х	х
Maximum leakage current ²⁾	х	х	х	х	х
Max. permissible power of power supply device 2)	x	х	х	х	х
Permissible ambient temperature	х	Х	х	х	х
Isolation class	Х	Х	х	х	х
Housing protection rating	х	Х	x	х	х
Maximum signal delay				х	х
Maximum signal jitter				Х	Х

3 : PROFIBUS PA

2) For intrinsic safety only

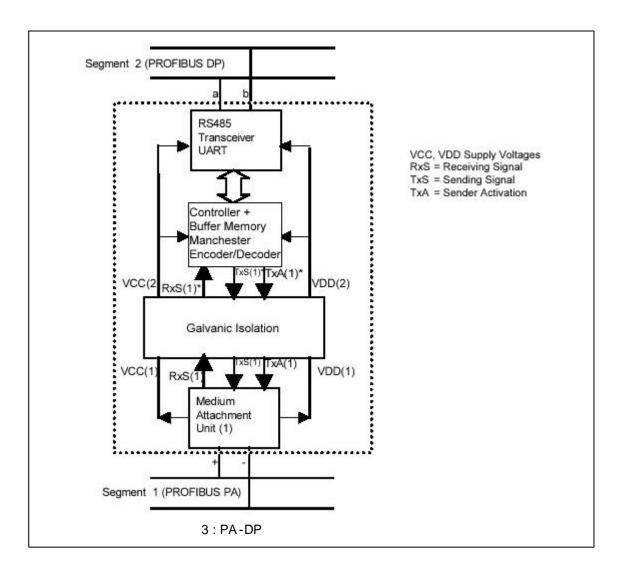



```
PROFIBUS PA
     PROFIBUS
               РΑ
                                    ? ? ? ?
                                                     (zero
PROFIBUS DP
                              crossing)
                                                    jitter)
                                 2가
                                                   가
                  IEC 61158-2
                              ??
                          가
                              - PA
                              - PA-DP
                              1) PROFIBUS PA
                                 2 PROFIBUS PA
                              PΑ
```

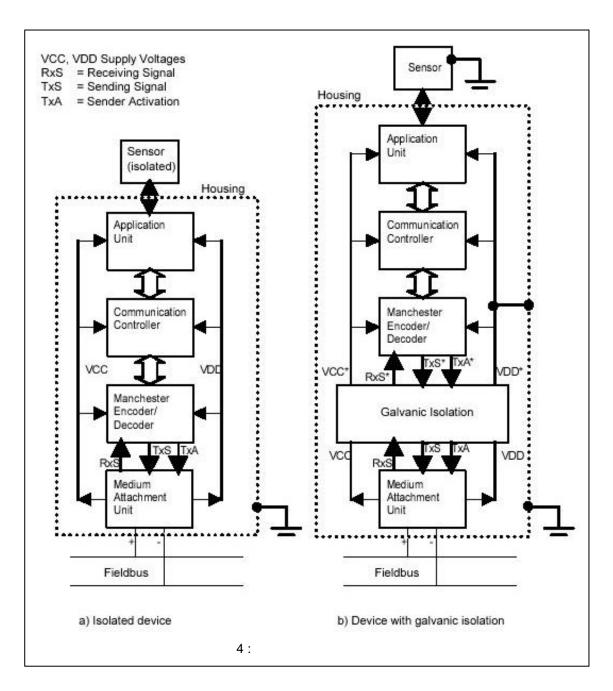
. 2 'galvanic isolation and Isolation " 가 . IEC 1158-2 2

IEC 61158-2

. 1 MAU "



(: jitter) . 가


가 FISCO .

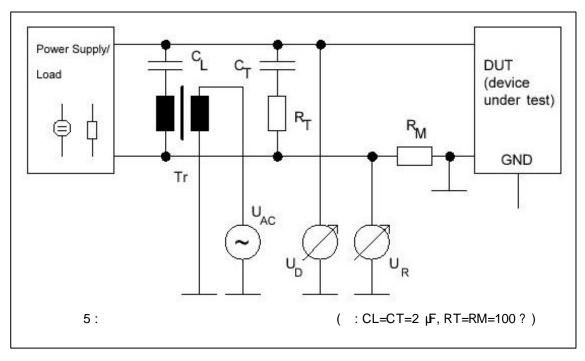
.

] EN 50 020 /S7/ . .

2) PROFIBUS F	PA-DP						PA-
PROFIBUS	PA-DP		DP				
PROFIBUS PA	A	PROFIBUS DP					가
	·		FISCO				
3		. IEC					
61158-2			EN 50 020 /S7/				
2-3	3						
PROFIBUS PA							
1 1	MAU		IEC 61158-2			II	
PA-DP		. EN 50	II .				
170 2		PROFIBUS DP		РА	DP		
						signal	zero
			crossing (: sigr	nal jitt	er)		


```
( :
                                )
                                가
가 .
                        4
  가
                                      (:
   가
                IEC 61158-2
                                             )
2
                250 pF
                              5. Reverse
                                 , FISCO
                                          (1
                                                   )
                                                   가
            MAU
                    Manchester
                                       2 (EEx ib) 3 (EEx
                              ia)
                              Schottky
                 가
                               (
                 (:
                               )가 50 µA
  ( : DC/DC
                              FISCO
               )
                               가
                                                  (:
                                          )
                       DC/DC
    가
                        \mathsf{MAU}
                가
            ( : 500 V
                       ) 6. (Thermal Ignition)
  가
              1500 V
              2
                  EN 50 020
```

```
가
(:
        ),
                           R = 100 ? ? 2 %
                          C = 1 ?F ? 20 %
        . EN 50 020
                              EN 50 020
     . 1.3 W T4
            가
                  가
                                   IEC 6158-2
   ? ?
                                           가
           ? ?
                                 가
                               EMC
                                 가
                         1.
                     (:
         1.8 W
    17.5 V,
                   1.2 W (: MAU)
            24 V).
                              (7.8 - 39 kHz)
```

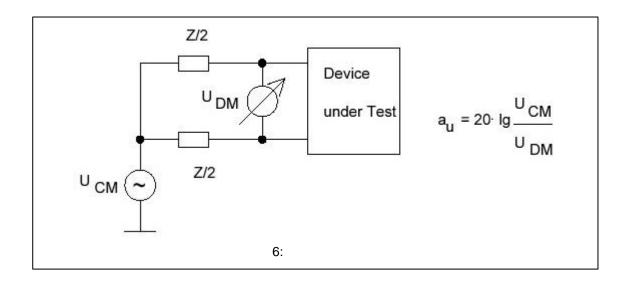

가)가

	Impedance	Voltage Range	Current Range
Bus interface (e.g., field device)	≥ 3 kΩ	9 to 32 V	For operating current
Intrinsically safe bus power supply 1)	≥ 400 Ω	For operating voltage	0 to I _{Max}
Non intrinsically safe bus power supply 1)	≥ 3 kΩ	For operating voltage	0 to I _{Max}

 The addition to the IEC 1158-2 standard planned at the time these guidelines were prepared also specifies limits for the phase of the output impedance.

4:

```
10 msec
                                                                                                        2
                                                               가
                                                  2 Vss
          sinus
                                                                                 2
                                                                         UD
                                                                                        UR
                                                             5
                                                                                          ( : IEC 61158-2
                                                                                                                                     Low
                                                                         Power Option
                                        Χ
                                                 2
                                                                                                            ),
                                                                                                 가
UD
          UR
        X = R_{\scriptscriptstyle M} \bullet \frac{U_{\scriptscriptstyle D}}{U_{\scriptscriptstyle R}}
                                                                                                       가
        X = R_{\scriptscriptstyle M} \bullet \frac{\left| U_{\scriptscriptstyle D} \right|}{\left| U_{\scriptscriptstyle R} \right|} \bullet e^{j \phi}
                                                                                     X가?
                                                                             ? 7.9 kHz - 39 kHz
                                                                                                       ).
                                                  가
2
                                                                                         가
      . UR
                       ? ? (UD )- ?
(UR) .
                                                                                                       (:
```

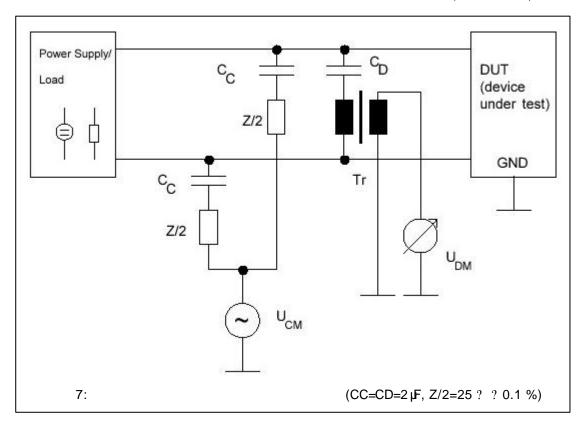


가 가 가 . 2 (Non-linear distortions). 250 pF (:) T1 2 가 (: EMC 2 가 2 1 m Veff

?).

.(50?

가



,

. 가 IEC 1158-2(11)

. 2-6

6 (: DUT)가 (: 7)

10 dB .

Frequency	kHz	≤ 40	120	400	1200
Asymmetry attenuation	dB	≥ 50	≥ 40	≥ 30	≥ 20

PROFIBUS	H/W FMS/DP/PA
1996. 3 月 15 日 Profibus Denmark P-NET, FIP EN(European Norm)50170	Vendor ASIC . norm conformity Modul (Device)가
Profibus FMS (Field - bus Message Specification), DP(Distributed Peripherals), PA(Process Autom -	Profibus vendor
a tion)	, PNO(Profibus Nutz - erora nisation, User Group)
	erora misation, Oser Group)
FMS User Service	·
Data Cell	PROFIBUS
Lavel System	
, DP	Profibus
(12Mbit/s 가)	(Component)
(Time -Critical)	(Master) Data
	(Slave Station)
PA (Explosion-hazardous)	(Station) (Bus
(Discription Transition)	Cable) (Bus Connector)
(Physical Transmission) IEC	
Standard 1158-2 DIN EN 61158-	(Repeater)
, ,	(Bus Segment)가 .
	(Bus) (Segment)
Profibus 9.6 Kbaud - 12M	active, passive 32
baud	가 , Profibus
246 Byte Data	(Master)

Station

Slave

. Profibus

(volume)

	Application				
Layer 7 Application Layer	Application Layer	ALI (Application Layer In FMS) (Fieldbus) Message Specification) LLI (Lower Layer Interface)	nterface) Fieldbus Management		
Layer 3 - 6		Empty			
Layer 2 Data Link Layer	FDL (Fieldbus Data Link Layer)	FLC (Fieldbus Link Control) MAC (Media Access Control)	Fieldbus Management (FMA 1/2)		
Layer 1 Physical Layer	Phsical Layer				

PROFIBUS FIVIS OSI Layer

(Master)	FMS	DP
	Data link	
(Master) .		
	PA	Device
EN 50 170 User data traffic	profile DP	DP
126 Station 가	가	
(Re-action time)	(Device class)	
40 - 60 Station	(Ex)	
. Profibus	(Non-Ex)	
System 126 Station		
(Address 0 125) 가 .	Profibus FMS/DP OSI 1, 2	2
	1, 2	2
PROFIBUS OSI LAYER	. (medium	
FMS, DP ISO/OSI	Cable)
Data link .	Telgramm Bit	
Format ,	Fieldbus Data Link	
3, 4, 5, 6	Data	Fieldbus

PHY_DATA. request	PHY_Send_Coding	
Parameter	TxD	RTS
Zero	0	1
ONE	1	1
SILENCE	Х	0

1500KBit/s	6.6m
	(1500Kbit
/s_6 6m)	71- 1.5Mb

Stub line

Profibus

PHY_DATA. indication	PHY_Receiver_Coding
Parameter	RxD
Zero	0
One	1

Data link layer

Data Link indicat- Station Bus Cable

ion PHY-DATA.ind Bus Connector

(service element \mathcal{P}^{\downarrow} . Station Switching Station

Fieldbus Data Link . Bus

9.6 19.2 45.45 93.75 187.5 500 1500 3000 6000 12000 PROFIBUS (Kbit/s) Line Norm Part 1 1200 1000 400 100 100 1200 | 1200 | 1200 200 100 (m)

Connector Bus Station

. Transmitted . EN

Data (TXD) Received Data (RXD), 50170 9-pin D-Sub connector Request to Send (RTS) 3 가

Typ 가 . connector 가 .

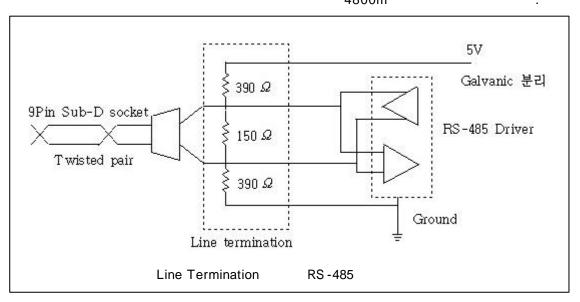
9 Pin D-

Profibus Bus Line, Tree, Bus Sab - Connector Connector

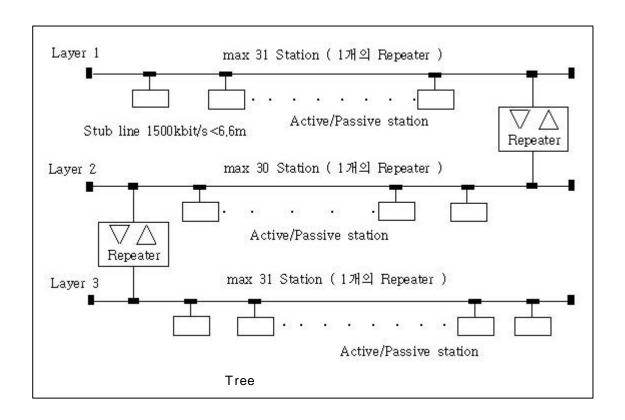
line Pin .

. Line

1,200m line Type 9-Pin

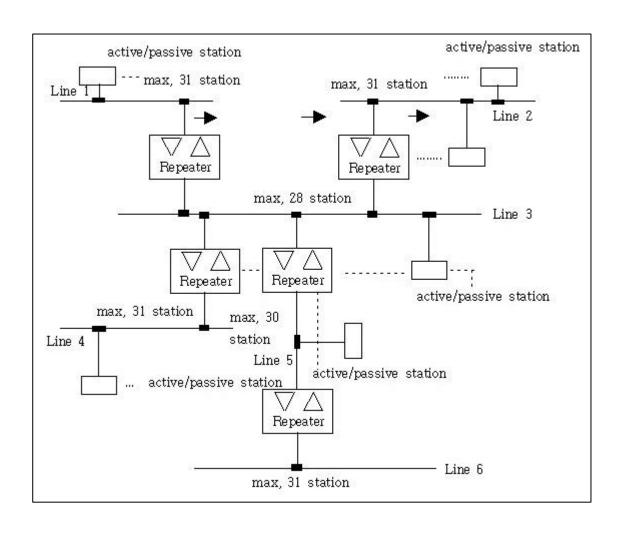

Stub line Sub - D - Connector

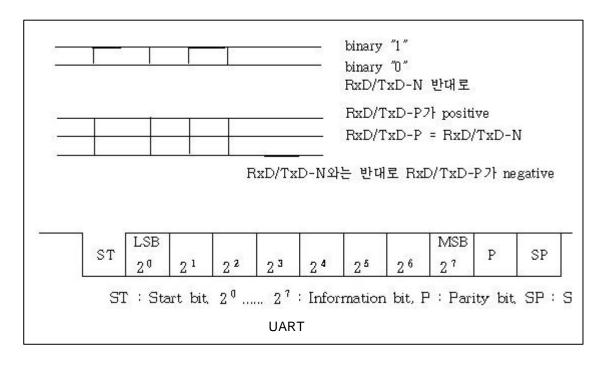
. Line Connector 가

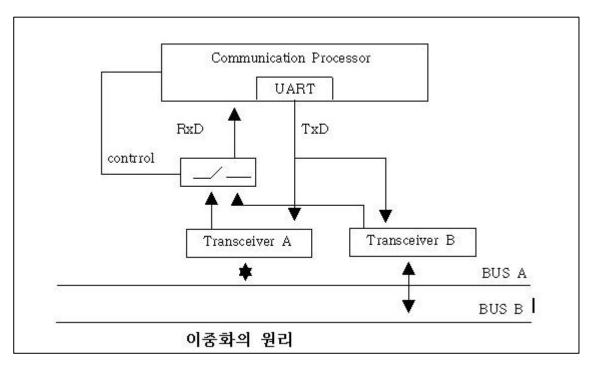

Stub line

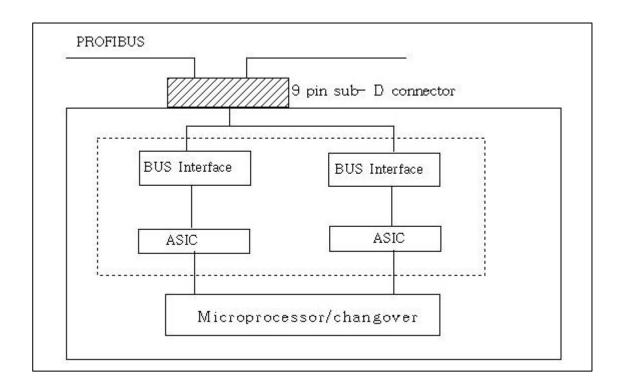
Plug Connector. Nr	Signal		
1	Schield	Schield/Functional Earthing	
2	M24	24V Output voltage ground	
3	RxD/TxD +P	Received data/Transmitted data -plus	
4	CNTR-P	Control signal for repeater	
5	DGND	Potential fo Data transmission(Ground 5V)	
6	VP	Connection Resistor P Supply voltage	
7	P24	Output voltage plus 24V	
8 R	RxD/TxD -N	Data -Minus	
		Received cable / Transmitted cable	
9	CNTR-N	Repeater -Control Signal	

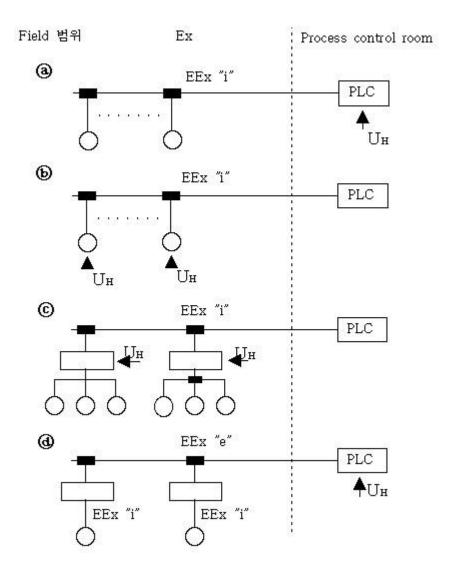
Mandatory-Signal RxD/TxD-P, RxD/TxD line Bus (Active, Passive -N, VP, GND 가 station, Repeater) 32 Operator-/maintenance , Repeater Fieldbus System User power supply (Line) 24V(P24V/M24V, Pin 2 **Bus Station** 3 7) Repeater Line 4800m




PROFIBUS Station Profibus Line ,(3 line)


Repeater	Segm	ent Bit			
Station passive		ive			
station	PROFIBUS station	Bit coding	NRZ code(Non - return -		
	Bus(Line)	to - zero c	ode), bit		
Repeater	Station	n waveform			
		binary 1	RxD/TxD - N		
	Line	RxP/	TxD-P 가 possitive level		
Repeater	Bus station	, bir	nary 0 RxD/TxD-N		
92 .		RxD/	TxD-P negative level		
		codin	g .		
Tre	e				
Repeat	er 가		idle state 가 ,		
,	Station		Line RxD/TxD-N		
Repeat	er 가	RxD/	TxD-P positive level		
	127 acti	ve/ (binary 1 =	signal) Station		
passive station	PROFIBUS	Tramsmitter	switching .		
		(async	(asynchronous)		


clock pulse


```
가
             (Symbol)
                                                 Slave
       (Transition) level -
                                         , Bus system
binary 0 1, binary 1 0, 가
         . UART(Universol
Asynchronous Receiver Transmitter)
                             BUS tranceiver
          가 .
                                (communication processor)
                                 data
                                       BUS , BUS
                            cable A tranceiver
                                                BUS
User data 8 bit Parity bit
                            data switch가 가
        Parity
              . Bit
 information bit
                            Slave
  Stop bit (Logic 1) UART
        (10)
System
             Bus
                            FROFIBUS ASIC
8 bit user data
                                           active ASIC
                                 data
11bit 가
                                    Micro processer user
idle-time 3 UART (33 bit
                            S/W . PROFIBUS
    )
                            active/passive ASIC
           Bus cable
                              passive ASIC off-line
(Redundancy)
                     Slave
                              , ASIC BUS
        (protective) . Bus
                              가 .
System
```



```
BUS system
                                             (<< | >>
                                                             )
    EMI
          optical fiber
     OLM(Optical Line Modul)
                                           가
  가
                                                    (user)
                                          . (
         (Eigen Softy)
                                     (b)
BMFT(Bundis - Ministerium fur
Forschungs und Technalogie)
                                           (a) (b) 가 , (c)
      PTB(Phusicalisch
                       Techinische
                                     (d)
Bundisanstalt)
               Endress
                           Hauser,
                                                                가
Samson, Eckardt
                   Krohne
           (Fieldbus Concept)
```

. EN 50 020 IEC -79-11

FISCO

(Power Supply) 가 passive

(Capacity) C<5nF,

(inductivity) L<10 µH

4 - 20mA

가

가 FISCO - Model (Fieldbus

Instrinsically Safe Concept)

COMMUWIN II MS

on-line, off-line (Configuration),

COMMUWIN II Endress + Hauser Ultrasonic sensor microwave

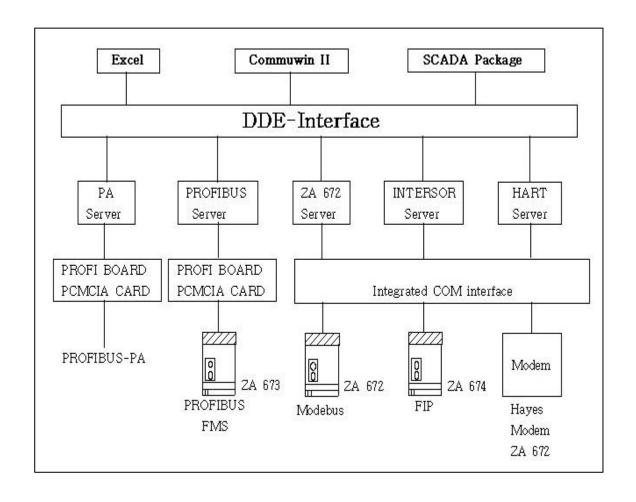
transmitter Curve

Parametrization Tool (display), Transmitter parameter

uploading downloading,

1997 parametrization Commuwin II

Tool V1.0, V1.5 2.0 DDE (Dynamic Data Exchange)


GUI(Graphical User

Interface) PROFIBUS - PA,

HART, INTENSOR

(Configuration),

가

been held so far.

ODVA-PROFIBUS working group

Karlsruhe, November 25, 2002 At this year's Hanover Fair (2002) the IDA Group and PROFIBUS announced that they would be cooperating on subjects of common interest in the field of Ethernet based communication solutions. A little later the ODVA also accepted an invitation to take part in the working groups thus formed. In two working groups the participants have addressed the subjects of "Device Integration" and "Plug and Work". The three organizations are represented by experts from their member companies, namely ABB, ifak Magdeburg, Jetter, Kuka, Lenze, Phoenix Contact, Rockwell Automation, Schneider Electric. Sick and Siemens.

The goal set for the "Device Integration" working group is to minimize differences between the solutions of the three organizations and, through timely coordination. to prevent further divergence of the solutions in connection with new subjects. This caters above all for to user demands maximum interoperability multi-vendor among devices. Three working sessions have

In a first step the working group took stock of existing technologies for device integration. Following technologies were examined: GSD, EDS, XDDML, FDT, DriveServer, OPC, DeKOS and Embedded Web-Server. In a second step the technologies were then classified by life-cycle phase of the devices. This revealed that the various technologies can supplement each other very well with their respective merits.

At the moment the group is working on a common understanding of the manifold requirements imposed on device integration. For this purpose the above mentioned technologies are analyzed in even greater detail. The analysis of consistent device integration needs to consider the configuration of the devices as well as the view of their system interfaces. Device configuration the configuration of device covers functions in the respective communication system, integration the of device functions such as I/O data, alarms, diagnostics and maintenance, and finally the integration of the device in the control program, in the documentation, and in operation and monitoring. The system interfaces mainly cover communication for control, for operation and monitoring, for engineering and commissioning, and for asset management. In spite of the complexity of the subject the working group sees plenty of common standard concepts whose usability needs to be further developed. The first results are likely to be available at the Hanover Fair 2003.

The goal set for the "Plug & Work" working group is to find a common concept for the various approaches used in the configuration and diagnosis of Ethernet-based devices. At present, the user is faced with a myriad of possible methods for configuring an industrial Ethernet device. As such, the ultimate goal of the working group is to arrive at a set of common mechanisms for "Plug & Work" that will be independent of protocol and thus adopted as standard by each of these major industrial network organizations.

The group has met four times since its formation in April 2002. The group has chosen to initially focus attention on several major topics: configuration of initial IP address, device discovery and identification, IP configuration when replacing a device, and recovery of devices with unknown IP addresses. The existing mechanisms supported by IDA, ODVA and PROFIBUS have been

presented and considered. The group's intention is to find areas of convergence between the three organizations, allowing for definition of common mechanisms without creating obsolescence existing devices. Several large, international end users have presented requirements for device configuration and diagnosis. The working group evaluated and structured the user requirements, and has started work towards the definition of solutions to meet the requirements and user scenarios, independent of application protocol. Anticipated future work includes common methods for network diagnosis. The first results of this working group are likewise expected to coincide with the Hanover Fair 2003.

PI (Profibus International)

:

"We'll never stand still!"

"PROFIBUS never stands still": that was the key message conveyed to a highly successful press conference held in Germany, September. More than 30 journalists attended to hear PROFIBUS International (PI) explain the latest trends in PROFIBUS automation technology.

Other main messages were that PI helps members...

?? expand core business

- ?? guarantee the future
- ?? convert progress into products and services

For example, PI is the only fieldbus organisation that accommodates new application profiles, and interest in Working Groups (e.g. "Weighing and Dosage", "Identification Systems" and "Devices for Semiconductor Industries") is very high.

With PROFInet technology, PI proves again that a solution is more than just its technical specification. PI offers full support for PROFInet, starting with experts in technical and marketing working groups who operate in close contact with the marketplace. This continues with support from PROFInet Competence Centers and extends to quality assurance. The first PROFInet test laboratories will be established by the end of 2002.

A major focus therefore is to make PROFIBUS as easy to use as possible. PI is putting focus on the development of high-performance, easily used engineering tools. Other examples include validation of PROFIBUS systems and Web Based Training.

PROFIBUS International is well-prepared

to meet the high expectations its special position demands. By building a broad international base and opening up new application areas, PROFIBUS International helps to expand core business for member companies and protects their investments. Expect the next issues of PROFInews to tell you more!